<sup id="m40ya"></sup>
  • 
    
  • <kbd id="m40ya"></kbd>
    <samp id="m40ya"></samp>
    <ul id="m40ya"></ul>
  • 更多精彩內(nèi)容,歡迎關(guān)注:

    視頻號(hào)
    視頻號(hào)

    抖音
    抖音

    快手
    快手

    微博
    微博

    歸并排序怎么排

    文檔

    歸并排序怎么排

    歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。
    推薦度:
    導(dǎo)讀歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。
    .example-btn{color:#fff;background-color:#5cb85c;border-color:#4cae4c}.example-btn:hover{color:#fff;background-color:#47a447;border-color:#398439}.example-btn:active{background-image:none}div.example{width:98%;color:#000;background-color:#f6f4f0;background-color:#d0e69c;background-color:#dcecb5;background-color:#e5eecc;margin:0 0 5px 0;padding:5px;border:1px solid #d4d4d4;background-image:-webkit-linear-gradient(#fff,#e5eecc 100px);background-image:linear-gradient(#fff,#e5eecc 100px)}div.example_code{line-height:1.4em;width:98%;background-color:#fff;padding:5px;border:1px solid #d4d4d4;font-size:110%;font-family:Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;word-break:break-all;word-wrap:break-word}div.example_result{background-color:#fff;padding:4px;border:1px solid #d4d4d4;width:98%}div.code{width:98%;border:1px solid #d4d4d4;background-color:#f6f4f0;color:#444;padding:5px;margin:0}div.code div{font-size:110%}div.code div,div.code p,div.example_code p{font-family:"courier new"}pre{margin:15px auto;font:12px/20px Menlo,Monaco,Consolas,"Andale Mono","lucida console","Courier New",monospace;white-space:pre-wrap;word-break:break-all;word-wrap:break-word;border:1px solid #ddd;border-left-width:4px;padding:10px 15px}

    排序算法是《數(shù)據(jù)結(jié)構(gòu)與算法》中最基本的算法之一。排序算法可以分為內(nèi)部排序和外部排序,內(nèi)部排序是數(shù)據(jù)記錄在內(nèi)存中進(jìn)行排序,而外部排序是因排序的數(shù)據(jù)很大,一次不能容納全部的排序記錄,在排序過(guò)程中需要訪問(wèn)外存。常見的內(nèi)部排序算法有:插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等。以下是歸并排序算法:

    歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。

    作為一種典型的分而治之思想的算法應(yīng)用,歸并排序的實(shí)現(xiàn)由兩種方法:

    自上而下的遞歸(所有遞歸的方法都可以用迭代重寫,所以就有了第 2 種方法);自下而上的迭代;

    在《數(shù)據(jù)結(jié)構(gòu)與算法 JavaScript 描述》中,作者給出了自下而上的迭代方法。但是對(duì)于遞歸法,作者卻認(rèn)為:

    However, it is not possible to do so in JavaScript, as the recursion goes too deep for the language to handle.

    然而,在 JavaScript 中這種方式不太可行,因?yàn)檫@個(gè)算法的遞歸深度對(duì)它來(lái)講太深了。

    說(shuō)實(shí)話,我不太理解這句話。意思是 JavaScript 編譯器內(nèi)存太小,遞歸太深容易造成內(nèi)存溢出嗎?還望有大神能夠指教。

    和選擇排序一樣,歸并排序的性能不受輸入數(shù)據(jù)的影響,但表現(xiàn)比選擇排序好的多,因?yàn)槭冀K都是 O(nlogn) 的時(shí)間復(fù)雜度。代價(jià)是需要額外的內(nèi)存空間。

    2. 算法步驟

    申請(qǐng)空間,使其大小為兩個(gè)已經(jīng)排序序列之和,該空間用來(lái)存放合并后的序列;

    設(shè)定兩個(gè)指針,最初位置分別為兩個(gè)已經(jīng)排序序列的起始位置;

    比較兩個(gè)指針?biāo)赶虻脑兀x擇相對(duì)小的元素放入到合并空間,并移動(dòng)指針到下一位置;

    重復(fù)步驟 3 直到某一指針達(dá)到序列尾;

    將另一序列剩下的所有元素直接復(fù)制到合并序列尾。

    3. 動(dòng)圖演示

    代碼實(shí)現(xiàn)JavaScript實(shí)例 function mergeSort(arr) { ?// 采用自上而下的遞歸方法? ? var len = arr.length;? ? if(len < 2) {? ? ? ? return arr;? ? }? ? var middle = Math.floor(len / 2),? ? ? ? left = arr.slice(0, middle),? ? ? ? right = arr.slice(middle);? ? return merge(mergeSort(left), mergeSort(right));}function merge(left, right){? ? var result = [];? ? while (left.length && right.length) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? result.push(left.shift());? ? ? ? } else {? ? ? ? ? ? result.push(right.shift());? ? ? ? }? ? }? ? while (left.length)? ? ? ? result.push(left.shift());? ? while (right.length)? ? ? ? result.push(right.shift());? ? return result;}Python實(shí)例 def mergeSort(arr):? ? import math? ? if(len(arr)<2):? ? ? ? return arr? ? middle = math.floor(len(arr)/2)? ? left, right = arr[0:middle], arr[middle:]? ? return merge(mergeSort(left), mergeSort(right))def merge(left,right):? ? result = []? ? while left and right:? ? ? ? if left[0] <= right[0]:? ? ? ? ? ? result.append(left.pop(0))? ? ? ? else:? ? ? ? ? ? result.append(right.pop(0));? ? while left:? ? ? ? result.append(left.pop(0))? ? while right:? ? ? ? result.append(right.pop(0));? ? return resultGo 實(shí)例 func mergeSort(arr []int) []int {? ? ? ? length := len(arr)? ? ? ? if length < 2 {? ? ? ? ? ? ? ? return arr? ? ? ? }? ? ? ? middle := length / 2? ? ? ? left := arr[0:middle]? ? ? ? right := arr[middle:]? ? ? ? return merge(mergeSort(left), mergeSort(right))}func merge(left []int, right []int) []int {? ? ? ? var result []int? ? ? ? for len(left) != 0 && len(right) != 0 {? ? ? ? ? ? ? ? if left[0] <= right[0] {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? ? ? ? ? left = left[1:]? ? ? ? ? ? ? ? } else {? ? ? ? ? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? ? ? ? ? right = right[1:]? ? ? ? ? ? ? ? }? ? ? ? }? ? ? ? for len(left) != 0 {? ? ? ? ? ? ? ? result = append(result, left[0])? ? ? ? ? ? ? ? left = left[1:]? ? ? ? }? ? ? ? for len(right) != 0 {? ? ? ? ? ? ? ? result = append(result, right[0])? ? ? ? ? ? ? ? right = right[1:]? ? ? ? }? ? ? ? return result}Java實(shí)例 public class MergeSort implements IArraySort {? ? @Override? ? public int[] sort(int[] sourceArray) throws Exception {? ? ? ? // 對(duì) arr 進(jìn)行拷貝,不改變參數(shù)內(nèi)容? ? ? ? int[] arr = Arrays.copyOf(sourceArray, sourceArray.length);? ? ? ? if (arr.length < 2) {? ? ? ? ? ? return arr;? ? ? ? }? ? ? ? int middle = (int) Math.floor(arr.length / 2);? ? ? ? int[] left = Arrays.copyOfRange(arr, 0, middle);? ? ? ? int[] right = Arrays.copyOfRange(arr, middle, arr.length);? ? ? ? return merge(sort(left), sort(right));? ? }? ? protected int[] merge(int[] left, int[] right) {? ? ? ? int[] result = new int[left.length + right.length];? ? ? ? int i = 0;? ? ? ? while (left.length > 0 && right.length > 0) {? ? ? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? ? ? } else {? ? ? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? ? ? }? ? ? ? }? ? ? ? while (left.length > 0) {? ? ? ? ? ? result[i++] = left[0];? ? ? ? ? ? left = Arrays.copyOfRange(left, 1, left.length);? ? ? ? }? ? ? ? while (right.length > 0) {? ? ? ? ? ? result[i++] = right[0];? ? ? ? ? ? right = Arrays.copyOfRange(right, 1, right.length);? ? ? ? }? ? ? ? return result;? ? }}PHP實(shí)例 function mergeSort($arr){? ? $len = count($arr);? ? if ($len < 2) {? ? ? ? return $arr;? ? }? ? $middle = floor($len / 2);? ? $left = array_slice($arr, 0, $middle);? ? $right = array_slice($arr, $middle);? ? return merge(mergeSort($left), mergeSort($right));}function merge($left, $right){? ? $result = [];? ? while (count($left) > 0 && count($right) > 0) {? ? ? ? if ($left[0] <= $right[0]) {? ? ? ? ? ? $result[] = array_shift($left);? ? ? ? } else {? ? ? ? ? ? $result[] = array_shift($right);? ? ? ? }? ? }? ? while (count($left))? ? ? ? $result[] = array_shift($left);? ? while (count($right))? ? ? ? $result[] = array_shift($right);? ? return $result;}C實(shí)例 int min(int x, int y) {? ? return x < y ? x : y;}void merge_sort(int arr[], int len) {? ? int *a = arr;? ? int *b = (int *) malloc(len * sizeof(int));? ? int seg, start;? ? for (seg = 1; seg < len; seg += seg) {? ? ? ? for (start = 0; start < len; start += seg * 2) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg * 2, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? int *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? int i;? ? ? ? for (i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? free(b);}

    遞歸版:

    實(shí)例 void merge_sort_recursive(int arr[], int reg[], int start, int end) {? ? if (start >= end)? ? ? ? return;? ? int len = end - start, mid = (len >> 1) + start;? ? int start1 = start, end1 = mid;? ? int start2 = mid + 1, end2 = end;? ? merge_sort_recursive(arr, reg, start1, end1);? ? merge_sort_recursive(arr, reg, start2, end2);? ? int k = start;? ? while (start1 <= end1 && start2 <= end2)? ? ? ? reg[k++] = arr[start1] < arr[start2] ? arr[start1++] : arr[start2++];? ? while (start1 <= end1)? ? ? ? reg[k++] = arr[start1++];? ? while (start2 <= end2)? ? ? ? reg[k++] = arr[start2++];? ? for (k = start; k <= end; k++)? ? ? ? arr[k] = reg[k];}void merge_sort(int arr[], const int len) {? ? int reg[len];? ? merge_sort_recursive(arr, reg, 0, len - 1);}C++

    迭代版:

    實(shí)例 template // 整數(shù)或浮點(diǎn)數(shù)皆可使用,若要使用物件(class)時(shí)必須設(shè)定"小於"(<)的運(yùn)算子功能void merge_sort(T arr[], int len) {? ? T *a = arr;? ? T *b = new T[len];? ? for (int seg = 1; seg < len; seg += seg) {? ? ? ? for (int start = 0; start < len; start += seg + seg) {? ? ? ? ? ? int low = start, mid = min(start + seg, len), high = min(start + seg + seg, len);? ? ? ? ? ? int k = low;? ? ? ? ? ? int start1 = low, end1 = mid;? ? ? ? ? ? int start2 = mid, end2 = high;? ? ? ? ? ? while (start1 < end1 && start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start1] < a[start2] ? a[start1++] : a[start2++];? ? ? ? ? ? while (start1 < end1)? ? ? ? ? ? ? ? b[k++] = a[start1++];? ? ? ? ? ? while (start2 < end2)? ? ? ? ? ? ? ? b[k++] = a[start2++];? ? ? ? }? ? ? ? T *temp = a;? ? ? ? a = b;? ? ? ? b = temp;? ? }? ? if (a != arr) {? ? ? ? for (int i = 0; i < len; i++)? ? ? ? ? ? b[i] = a[i];? ? ? ? b = a;? ? }? ? delete[] b;}

    遞歸版:

    實(shí)例 void Merge(vector &Array, int front, int mid, int end) {? ? // preconditions:? ? // Array[front...mid] is sorted? ? // Array[mid+1 ... end] is sorted? ? // Copy Array[front ... mid] to LeftSubArray? ? // Copy Array[mid+1 ... end] to RightSubArray? ? vector LeftSubArray(Array.begin() + front, Array.begin() + mid + 1);? ? vector RightSubArray(Array.begin() + mid + 1, Array.begin() + end + 1);? ? int idxLeft = 0, idxRight = 0;? ? LeftSubArray.insert(LeftSubArray.end(), numeric_limits::max());? ? RightSubArray.insert(RightSubArray.end(), numeric_limits::max());? ? // Pick min of LeftSubArray[idxLeft] and RightSubArray[idxRight], and put into Array[i]? ? for (int i = front; i <= end; i++) {? ? ? ? if (LeftSubArray[idxLeft] < RightSubArray[idxRight]) {? ? ? ? ? ? Array[i] = LeftSubArray[idxLeft];? ? ? ? ? ? idxLeft++;? ? ? ? } else {? ? ? ? ? ? Array[i] = RightSubArray[idxRight];? ? ? ? ? ? idxRight++;? ? ? ? }? ? }}void MergeSort(vector &Array, int front, int end) {? ? if (front >= end)? ? ? ? return;? ? int mid = (front + end) / 2;? ? MergeSort(Array, front, mid);? ? MergeSort(Array, mid + 1, end);? ? Merge(Array, front, mid, end);}C#實(shí)例 public static List sort(List lst) {? ? if (lst.Count <= 1)? ? ? ? return lst;? ? int mid = lst.Count / 2;? ? List left = new List(); ?// 定義左側(cè)List? ? List right = new List(); // 定義右側(cè)List? ? // 以下兩個(gè)循環(huán)把 lst 分為左右兩個(gè) List? ? for (int i = 0; i < mid; i++)? ? ? ? left.Add(lst[i]);? ? for (int j = mid; j < lst.Count; j++)? ? ? ? right.Add(lst[j]);? ? left = sort(left);? ? right = sort(right);? ? return merge(left, right);}/// /// 合併兩個(gè)已經(jīng)排好序的List/// /// 左側(cè)List/// 右側(cè)List/// static List merge(List left, List right) {? ? List temp = new List();? ? while (left.Count > 0 && right.Count > 0) {? ? ? ? if (left[0] <= right[0]) {? ? ? ? ? ? temp.Add(left[0]);? ? ? ? ? ? left.RemoveAt(0);? ? ? ? } else {? ? ? ? ? ? temp.Add(right[0]);? ? ? ? ? ? right.RemoveAt(0);? ? ? ? }? ? }? ? if (left.Count > 0) {? ? ? ? for (int i = 0; i < left.Count; i++)? ? ? ? ? ? temp.Add(left[i]);? ? }? ? if (right.Count > 0) {? ? ? ? for (int i = 0; i < right.Count; i++)? ? ? ? ? ? temp.Add(right[i]);? ? }? ? return temp;}Ruby實(shí)例 def merge list? return list if list.size < 2? pivot = list.size / 2? # Merge? lambda { |left, right|? ? final = []? ? until left.empty? or right.empty?? ? ? final << if left.first < right.first; left.shift else right.shift end? ? end? ? final + left + right? }.call merge(list[0...pivot]), merge(list[pivot..-1])end

    參考地址:

    https://github.com/hustcc/JS-Sorting-Algorithm/blob/master/5.mergeSort.md

    https://zh.wikipedia.org/wiki/%E5%BD%92%E5%B9%B6%E6%8E%92%E5%BA%8F

    以下是熱心網(wǎng)友對(duì)歸并排序算法的補(bǔ)充,僅供參考:

    熱心網(wǎng)友提供的補(bǔ)充1:

    分而治之

    可以看到這種結(jié)構(gòu)很像一棵完全二叉樹,本文的歸并排序我們采用遞歸去實(shí)現(xiàn)(也可采用迭代的方式去實(shí)現(xiàn))。分階段可以理解為就是遞歸拆分子序列的過(guò)程,遞歸深度為log2n。

    合并相鄰有序子序列

    再來(lái)看看治階段,我們需要將兩個(gè)已經(jīng)有序的子序列合并成一個(gè)有序序列,比如上圖中的最后一次合并,要將[4,5,7,8]和[1,2,3,6]兩個(gè)已經(jīng)有序的子序列,合并為最終序列[1,2,3,4,5,6,7,8],來(lái)看下實(shí)現(xiàn)步驟。

    import java.util.Arrays;
    
    /**
     * Created by chengxiao on 2016/12/8.
     */
    public class MergeSort {
        public static void main(String []args){
            int []arr = {9,8,7,6,5,4,3,2,1};
            sort(arr);
            System.out.println(Arrays.toString(arr));
        }
        public static void sort(int []arr){
            int []temp = new int[arr.length];//在排序前,先建好一個(gè)長(zhǎng)度等于原數(shù)組長(zhǎng)度的臨時(shí)數(shù)組,避免遞歸中頻繁開辟空間
            sort(arr,0,arr.length-1,temp);
        }
        private static void sort(int[] arr,int left,int right,int []temp){
            if(left以上為歸并排序算法詳細(xì)介紹,插入排序、希爾排序、選擇排序、冒泡排序、歸并排序、快速排序、堆排序、基數(shù)排序等排序算法各有優(yōu)缺點(diǎn),用一張圖概括: 

    關(guān)于時(shí)間復(fù)雜度

    平方階 (O(n2)) 排序 各類簡(jiǎn)單排序:直接插入、直接選擇和冒泡排序。

    線性對(duì)數(shù)階 (O(nlog2n)) 排序 快速排序、堆排序和歸并排序;

    O(n1+§)) 排序,§ 是介于 0 和 1 之間的常數(shù)。 希爾排序

    線性階 (O(n)) 排序 基數(shù)排序,此外還有桶、箱排序。

    關(guān)于穩(wěn)定性

    穩(wěn)定的排序算法:冒泡排序、插入排序、歸并排序和基數(shù)排序。

    不是穩(wěn)定的排序算法:選擇排序、快速排序、希爾排序、堆排序。

    名詞解釋:

    n:數(shù)據(jù)規(guī)模

    k:"桶"的個(gè)數(shù)

    In-place:占用常數(shù)內(nèi)存,不占用額外內(nèi)存

    Out-place:占用額外內(nèi)存

    穩(wěn)定性:排序后 2 個(gè)相等鍵值的順序和排序之前它們的順序相同

    文檔

    歸并排序怎么排

    歸并排序(Merge sort)是建立在歸并操作上的一種有效的排序算法。該算法是采用分治法(Divide and Conquer)的一個(gè)非常典型的應(yīng)用。
    推薦度:
    為你推薦
    資訊專欄
    熱門視頻
    相關(guān)推薦
    希爾排序法是怎么排的 c語(yǔ)言選擇排序從小到大 冒泡排序法的基本思路 桶排序java 堆排序是穩(wěn)定的排序算法 快速排序算法原理 歸并排序算法c語(yǔ)言 數(shù)據(jù)結(jié)構(gòu)希爾排序流程圖 什么是選擇排序法 降序排序冒泡排序優(yōu)化 堆是一種什么排序方法 實(shí)現(xiàn)歸并排序利用的算法 希爾排序c 排序算法的一般選擇規(guī)則 冒泡排序流程圖 堆排序計(jì)算 歸并排序算法流程圖解 數(shù)據(jù)結(jié)構(gòu)希爾排序c語(yǔ)言 選擇排序算法例子 冒泡排序c語(yǔ)言 快速排序怎么排 堆排序思想 c語(yǔ)言桶式排序 冒泡法排序c語(yǔ)言編寫 選擇排序發(fā) 希爾排序代碼實(shí)現(xiàn) 歸并排序算法詳解 快速排序的詳細(xì)過(guò)程 堆排序代碼數(shù)據(jù)結(jié)構(gòu) 桶排序是什么意思 冒泡排序代碼 基數(shù)排序c 簡(jiǎn)單選擇排序流程圖 希爾排序怎么排序 歸并排序的具體過(guò)程 快速排序思想 堆排序算法思想 桶排序算法c 冒泡排序法流程圖 基數(shù)排序算法的基本思想
    Top 久久精品国产亚洲av麻豆小说 | 中文字幕精品亚洲无线码二区 | 亚洲精品久久久www| 99久久国产综合精品1尤物| 亚欧乱色国产精品免费视频| 亚洲系列国产精品制服丝袜第| 亚洲国产精品一区二区第四页| 久久无码国产专区精品| 国产精品.XX视频.XXTV| 国产精品久久久久久久久久影院 | 亚洲一区二区三区精品视频| 9久9久热精品视频在线观看| 久久精品国产亚洲AV未满十八| 国产精品三级国产电影| www国产亚洲精品久久久| 国产亚洲精品影视在线| 久久久久无码国产精品一区| 国产精品色视频ⅹxxx| 成人无号精品一区二区三区| 精品日韩亚洲AV无码| 一本久久a久久精品亚洲| 精品无码成人片一区二区| 国产成人精品男人的天堂538| 99精品国产在热久久| 亚洲AV无码久久精品蜜桃| 精品一区二区三区电影| 人妻精品久久无码区| 精品一区二区三区在线成人| 亚洲精品自产拍在线观看| 国产精品久久久久三级| 亚洲AV无码成人精品区狼人影院 | 亚洲AV无码久久精品色欲| 精品人妻少妇嫩草AV无码专区| 久久精品无码一区二区三区免费| 91全国探花精品正在播放| 国产成人精品电影在线观看| 国产中文在线亚洲精品官网| 九九热这里都是精品| 国产在线精品99一卡2卡| 成人精品一区二区三区电影| 亚洲国产精品18久久久久久|